In these recent tests presented at the Vienna Symposium, Tula, working with Cummins, demonstrated that Jacobs’ CDA hardware combined with Tula’s Dynamic Skip Fire (DSF) algorithm improved the control of these thermal management modes to simultaneously maximize exhaust temperatures and CO2 reductions. Testing was completed with steady-state mapping to assess the relationship between firing fraction and performance, and emissions parameters of the combustion events to optimize the use of CDA. “At 1,000 RPM, diesel DSF shows an increase in exhaust temperature of nearly 100 degrees C while still improving fuel consumption by 25 percent,”2 as stated in the paper, along with similar improvements at other operating conditions.
Various test cycles were also evaluated through simulation, including the FTP (Federal Test Procedure) and the Low Load Candidate 7 (LLC7), which is the procedure planned to be introduced in conjunction with the new CARB regulations to measure and manage emissions during low load operation.
When using DSF and CDA in these simulations, NOx was found to be reduced by 45 percent and CO2 improved 1.5 percent over the baseline in the FTP Hot cycle. During the LLC7 cycle, NOx was reduced 66 percent and CO2 saw a reduction of 3.7 percent using DSF over the baseline engine2. In comparison, the Navistar engine test results published earlier demonstrate an 8 percent reduction in NOx and a 6 percent reduction in CO2 over the FTP cycle, and a 77 percent reduction in NOx and a 12 percent reduction in CO2 over the LLC7 test cycle using fixed, 3-cylinder deactivation1.
The Navistar tests were conducted on a 13L Navistar engine equipped with CDA and were performed by an internationally known third-party laboratory and funded by the EPA. The announcement of their test results was made in Atlanta during the Annual Meeting of the American Trucking Associations’ Technology & Maintenance Council in February.
Tula and Cummins intend to continue testing and optimizing this DSF-enabled system and will validate the NOx and CO2 benefits through the various engine test cycles and truck testing.
Jacobs said it would continue collaborating with Tula to further develop cylinder deactivation technologies, which reduce engine fuel consumption and emissions.
“The Jacobs’ CDA system has been developed over the past ten years and was specifically designed for the heavy duty trucking market,” said Janak. “The valve bridge in the CDA system is an integral component to our High Power Density (HPD) system. Jacobs has demonstrated both HPD and CDA systems that utilize our unique deactivation mechanism on more than 15 different heavy duty engine platforms and eight different road test trucks. We believe these systems are ready for the market and we are excited with how technologies such as these will improve drivability, emissions, and fuel economy.”
Citation:
1: Matheaus, A., Singh, J., Sanchez, L., Evans, D. et al., “Evaluation of Cylinder Deactivation on a Class 8 Truck over Light Load Cycles,” SAE Technical Paper 2020-01-0800, 2020, https://doi.org/10.4271/2020-01-0800.
2: Farrell, L., Frazier, T., Younkins, M., & Fuerst, J. (2020, April 24). Diesel Dynamic Skip Fire (dDSF) Simultaneous CO2 and NOx Reduction. Fortschritt-Berichte VDI – 41. International Vienna Motor Symposium, 813(12), 1–976, ISBN: 978-3-18-381312-4.